
Encyclopedia of the Human Genome—Author Stylesheet

267

ENCYCLOPEDIA OF THE HUMAN GENOME
2000
©Nature Publishing Group

Hidden Markov Models

HMM, gene finding, profile HMM, training HMM, protein structure prediction

1. Introduction
2. Definitions
3. Basic Algorithms
4. Construction and training of an HMM

Przytycka, Teresa M
Teresa M Przytycka
Johns Hopkins School of Medicine USA

Hidden Markov Model is a
statistical model frequently
used for modelling
biological sequences. In
HMM, a sequence is
modelled as an output of a
discrete stochastic process,
which progresses though a
series of states that are
“hidden” from the
observer. At each state the
process outputs a symbol
from a finite alphabet (e.g.
{A,T,C,G,ε}, where ε is an
empty symbol) according
to some probability
distribution.

Introduction

A hidden Markov model (HMM) is a statistical model, initially developed for speech

recognition (Rabiner, 1989), which has subsequently been used in numerous

©Copyright Nature Publishing Group 28 December, 2007 Page 1

przytyck
Draft

Encyclopedia of the Human Genome—Author Stylesheet

biological sequence analysis applications. Current applications of HMMs in

computational biology include among others modelling protein families (Eddy 2001,

Krogh et al, 1993), gene finding, (Krogh et al. 1994, Burge et al, 1997, Lukashin et

al, 1998, Henderson et al 1997, Salezberg, 1998), prediction transmembrane helices

(2001) Krogh, , tertiary structure prediction (Bystroff, 2000; DiFrancesco et al 1997).

In a hidden Markov model, a biological sequence, e.g. a protein, DNA or RNA

sequence, is modelled as an output generated by a stochastic process progressing

through discrete time steps. At each time step, the process outputs a symbol (an amino

acid or a nucleotide) and moves from one of a finite number of states to the next state.

Frequently it is convenient to have states that do not output any symbol (e.g. a

“delete” state in the profile HMM described below) thus, for uniformity, we include

empty symbol, ε, in the alphabet. Both actions, the transition from state to state and

the emission of a symbol, follow probability distributions, which are a part of the

model. In a hidden Markov model, only the sequence of emitted symbols is observed.

The path of states followed by the process is “hidden” from the observer.

Given a hidden Markov model, M, and a sequence S, the standard question is whether

S has the property modelled by M. To address this question one needs to compute the

probability, P[S|M], of sequence S being generated by M. The log of the ratio of

P[S|M] to the probability of generating S by chance is usually used as a scoring

function in assessing whether S has the model property. For example, given an HMM

representing the globin protein family and a sequence of amino acids, the scoring

function described above is used to determine if the given sequence belongs to the

globins family.

Often hidden Markov models are designed in such a way that their states correspond

to biologically relevant positions in the sequence. For example, in an HMM for gene

finding, specific states may correspond to the beginning and to the end of an exon. In

this case the most likely path of states used to generate the sequence contains

information for annotating the sequence. Therefore, another important question

concerning an HMM is finding the most likely path of states for a given sequence.

The following sections provide a formal definition of an HMM, describe efficient

algorithms for finding the most likely path of states for a sequence, computing P[S|M],

and finally describe methods of designing hidden Markov models.

©Copyright Nature Publishing Group 28 December, 2007 Page 2

Encyclopedia of the Human Genome—Author Stylesheet

Definitions

A first order hidden Markov model is defined formally as a tuple, M = (Q, Σ, a, s,, e)

where:

− Q =.{1,…,n} is a finite set of states;

− Σ = {σ1, …,σm} – is the alphabet, i.e. the set of output symbols;.

− a is n x n matrix of transition probabilities defined formally as a(i,j) =

Pr[qt+1= j|qt = i], where qt is the state visited at step t;

− s is n vector of start probabilities, i.e. s (i) = Pr[q0 = i]

− e(i,j) is n x m matrix of emission probabilities defined formally as e(i,j) =

P[ot=σj|qt = i]; where ot∈Σ is the symbol outputted in step t.

It is often convenient to have distinguished “start” and “end” states: 0, and n+1 that

do not emit any symbols and remove vector s from the model definition. In the

considerations below, we make this assumption. An HMM is usually visualized as a

directed graph with vertices corresponding to the states and directed edges to the pairs

of states i, j for which transition probability a(i,j) is non-zero. A simple HMM is

shown in Figure 1.

In a kth order model the transition and emission probabilities depend on k last steps.

Consequently, matrix a is of size nk+1 and matrix e is of size nk m.

An HMM may generate the same sequence following different state paths (see Figure

1). Given an HMM M, sequence S= ο1,…,οT, and a path of states p =

q0q1…qmqT+1where q0=0 and qT+1 = n+1, the probability of generating S using path p

in model M, P[S, p|M], is equal to the product:

P[S,p|M] = P[p|M] P[S|p,M]

©Copyright Nature Publishing Group 28 December, 2007 Page 3

Encyclopedia of the Human Genome—Author Stylesheet

where P[p|M] is the probability of the selecting the path p and P[S|p,M] the

probability of generating sequence S assuming path p.

P[p|M] = a(q0,q1) a(q1 , q2) a(q2 , q3) … a(qT, qT+1);

P[S|p,M] = e(q1,ο1) e(q2, ο2) … e(qT, οT)
The most likely path of a sequence S in model M is the path, pmax, that maximizes

P[S,p| M] . Thus although the states of a hidden Markov are not directly observable,

the most likely path provides information about the likely sequence of such “hidden”

states.

Finally, the probability P[S|M] of generating sequence S, by an HMM, M is defined

as:

P[S|M] = ΣpP[S|M,p]

 In practical applications probabilities values P are replaced with –log P score. This

avoids producing numbers that are too small to be represented by a computer.

 Basic algorithms

Given an HMM, M, and a sequence, S = ο1,…οT of length T, and assume that in step

T+1 the process is in the stop state (n+1) generating empty symbol. The values pmax

and P[S|M] can computed using a dynamic programming method. Let vk(i) be the

most probable path that generates ο1,…οi and ends at state k at step i. Obviously

pmax = vn+1(T+1).

The recurrence for computing vk(i) is given by the following formula:

v k(i)= e(k,οi) max j vj(i-1)a(j,k).

With appropriate initial conditions, the above recurrence provides the basis for an

O(n2T)- time dynamic programming algorithm known as the Viterbi algorithm. Since

the number of states, n, is fixed for the model, the time of the algorithm depends

linearly on the length of the input sequence.

©Copyright Nature Publishing Group 28 December, 2007 Page 4

Encyclopedia of the Human Genome—Author Stylesheet

Replacing maximum with summation in the recursive formula for vk(i) yields the

recurrence for [S|M]. Namely, let fk(i) denote the probability of generating

subsequence ο1,…οi using a path that ends at state k. Then

fk(i) = e(k,οi)Σj fj(i-1)a(j,k)

and

P[S|M] = fn+1(T+1).

Variable fk(i), called the forward variable, is also used for computing the probability

of state k in step i, P[qi = k|S,M]. To compute the last probability, a similar backward

variable, bk(i), is also used. Formally, bk(i) is the probability of generating the

subsequence οi+1,…οT using state k as the starting state and the usual “end” state n+1.

The backward variable is computed similarly as the forward variable but the

algorithm is executed in the “backward” direction: using “end” state in the place of

the “begin” state. By definition of fk(i), bk(i) follows that:

P[qi = k|S,M] = (fk(i) bk(i))/P[S|M].

Construction and training of an HMM

There are two basic steps in building of an HMM: designing the directed graph that

describes the topology of the model (number of states, connections between states)

and assigning transition and emission probabilities.

The topology of an HMM is usually designed in an ad-hoc way, based on the

designer’s understanding of the modelled sequence. Frequently, such a sequence can

be described by a “grammar”. For example, a simple grammar for a prokaryotic gene

can be given as S (C)n E where S is the start codon, C is any codon different than an

end codon and E is an end codon. C is repeated n times. In this case, it is natural to

design the topology of an HMM in a way that follows the grammatical description. In

the prokaryotic gene example, a topology implied by the simple grammar is shown on

©Copyright Nature Publishing Group 28 December, 2007 Page 5

Encyclopedia of the Human Genome—Author Stylesheet

Figure 2. The grammar, and subsequently a corresponding HMM, for the eukaryotic

gene is far more complicated. It needs to describe a gene sequence as an interleaving

sequence of exons and introns taking into account that the splicing can occur at any

position a codon.

 A different approach is taken in designing the so-called profile hidden Markov

models for protein families. Namely, a universal topology is used and a correct setting

of parameters elucidates the variations between families. The design includes “match”

states, “insert” states and silent “delete” states (Figure 3).

In the second phase of the construction, the transition and emission probabilities are

assigned to the model. This is done automatically based on a representative sample of

sequences called the training set. The computational problem is described formally as

follows:

Given a training set S1, ..Sn and a topology of an HMM, M, find emission and

transition probabilities that maximize the likelihood that S1, ..Sn are generated by the

model.

The usual assumption is that S1, ..Sn are generated independently and therefore

P(S1, ..Sn |M) = Πi P(Si |M)

 And replacing the probability with -log score we have

Score(S1, ..Sn |M) = Σi Score (Si |M).

The training step is straightforward if for each training sequence, Si, the paths of

states, which the model uses to generate Si, is known. In this case the training step

reduces to collecting transition and emission frequencies along these paths. The

training step becomes more sophisticated if the state paths are unknown. The main

strategy in this case is to start with some initial probability distribution and the

iteratively improve the model using the training set. For example, one frequently used

method, the Expectation Maximization method approaches this problem as follows:

1. Assign some initial value to parameters (say uniform probability distribution).

2. For each sequence in the training set, compute the expected number of times

each transition/emission is used. This can be done efficiently using the

algorithms described in the previous section.

©Copyright Nature Publishing Group 28 December, 2007 Page 6

Encyclopedia of the Human Genome—Author Stylesheet

3. Estimate new parameters of the model based on the expected values from

step 2.

4. Repeat steps 2 and 3 until some convergence criterion is reached.

It can be shown that Expectation Maximization method converges to a local

maximum. Other training methods include the gradient descent method and simulated

annealing.

One of the fundamental questions that one needs to consider during the training

process is whether the training set contains enough data to estimate correctly

transition and emission probabilities . Lack of data leads to overfitting of the model –

the model cannot generalize the training data to a larger set. In particular, the question

of sufficient data needs to be examined when deciding on the order of the model. In

principle, a higher order model should be more accurate. For example, gene

recognition models often are of 5th order. (This is equivalent of keeping memory of

two codons.) The number of parameters that need to be estimated grows exponentially

with the order of the model and the possibility of overfitting increases.

References

Burge, C. and Karlin, S. (1997) Prediction of complete gene structures in human

genomic DNA. Journal of Molecular Biology 268: 78-94.

Bystroff C, Thorsson V, Baker D. (2000) HMMSTR: a hidden Markov model for

local sequence-structure correlations in proteins. Journal of Molecular Biology.

301(1) : 173-90.

Di Francesco F, Garnier J, and Munson PJ (1997) Protein topology recognition from

secondary structure sequences: application of the hidden Markov models to the alpha

class proteins. Journal of Molecular Biology 28 267(2) : 446-63.

Eddy SR. (2001) HMMER: Profile hidden Markov models for biological sequence

analysis (http://hmmer.wustl.edu/). 2001.

Henderson J, Salzberg S, Fasman KH. (1997) Finding genes in DNA with a Hidden

Markov Model. Journal of Computational Biology 4(2) :127-41.

©Copyright Nature Publishing Group 28 December, 2007 Page 7

Encyclopedia of the Human Genome—Author Stylesheet

Krogh A, Brown M., Mian IS, Sjolander K, and Haussler D.(1994) Hidden Markov

models in computational biology: Application to protein modelling. Journal of

Molecular Biology, 235 :1501-1531.

Krogh A, Larsson B, von Heijne G, Sonnhammer EL (2001) Predicting

transmembrane protein topology with a hidden Markov model: application to

complete genomes. Journal of Molecular Biology 305(3) : 567-80.

Krogh A., Mian IS. and Haussler (1994) D. A hidden Markov model that finds genes

in E. coli DNA. Nucleic Acids Resarch 22 : 4768-4778.

Lukashin AV. and Borodovsky M. (1998) GenMark.hmm: new solutions for gene

finding. Nucleic Acids Research 26(4) : 1107-1115.

Rabiner LR A tutorial on hidden Markov models and selected applications in speech

recognition. Proceeding of the IEEE 77 : 257-286.

Bibliography

Clote P., Backofen R. (2000) Computational Molecular Biology An Introduction,

John Wiley & Cons, LTD, Chichester UK.

Durbin R., Eddy S., Krogh A., Mitchison G. (1998) Biological Sequence analysis,

Cambridge University Press, Cambridge UK.

©Copyright Nature Publishing Group 28 December, 2007 Page 8

Encyclopedia of the Human Genome—Author Stylesheet

1
A: .30
C: .20
G: .30
T : .20

A: .25
C: .25
G: .25
T: .25

0.4

0.4
6

4
0.6

A: .05
C: .45
G: .45
T: .05 2

0.2

0.8

A: .50
C: .0
G: .0
T: .50

1.0

3
end

1.0 1.0 7

A: .45
C: .05
G: .05
T: .45

 0

start

0.6

Figure 1. A simple hidden Markov model. The boxes correspond to states where the
emmision probabilites for each state are given inside each box. The tranition
probabilities are given above the corresponding arrows. Note that there are two state
paths that can be used to generate sequence GAGCGCT: 0,1,2,4,4,4,4,6,7 and
0,1,2,3,3,3,3,6,7. The probability of generating the sequence using the first path is
1.06 x10–4 and using the second path is 4.05 x 10-9. The probability of generating the
sequences by the model is the sum of these probabilities.

©Copyright Nature Publishing Group 28 December, 2007 Page 9

Encyclopedia of the Human Genome—Author Stylesheet

T A A

T A G

T G A

codon
pos. 3

codon
pos. 1

codon
pos. 2 end G T A

start

Figure 2. The topology of a simple HMM for prokaryotic gene recognition. In practice, the
topology is more complex (e.g. Krogh 1994).

©Copyright Nature Publishing Group 28 December, 2007 Page 10

Encyclopedia of the Human Genome—Author Stylesheet

M start

D D D

I I I I I

M M end M

D

Figure 3. The topology of a profile HMM for a sequence family. The states labelled

with M correspond to matches, the states labelled with I correspond to insertions and

(silent) circle states correspond to deletions.

©Copyright Nature Publishing Group 28 December, 2007 Page 11

	Introduction
	Definitions
	 Basic algorithms
	Construction and training of an HMM

